
Advanced Rust - Lab 7: Async Programming

Lukáš Hozda

2026

Exercise 1: Task Spawning and Channels
Objective
Build a parallel work distribution system using async tasks and channels.

Instructions
Implement a system that:

1. Spawns multiple worker tasks
2. Distributes work items to workers via a channel
3. Collects results from workers via another channel
4. Processes all results

Requirements
use tokio^:sync^:mpsc;

^^/ Represents a work item to process
^[derive(Debug)]
struct WorkItem {

id: u32,
data: String,

}

^^/ Represents the result of processing a work item
^[derive(Debug)]
struct WorkResult {

id: u32,
processed: String,

}

^^/ Simulates processing a work item
^^/ Keep like this or do something funny that takes time
async fn process_item(item: WorkItem) ^> WorkResult {

^/ simulate some async work
tokio^:time^:sleep(tokio^:time^:Duration^:from_millis(100)).await;
WorkResult {

id: item.id,
processed: item.data.to_uppercase(),

}
}

1

^^/ Spawns worker tasks that receive work items and send back results
async fn spawn_workers(

num_workers: usize,
work_rx: mpsc^:Receiver<WorkItem>,
result_tx: mpsc^:Sender<WorkResult>,

) {
^/ - convert work_rx into a shared receiver (hint: Arc<Mutex<^^.^>)
^/ - spawn num_workers tasks
^/ - each worker should loop, receiving items and sending results
^/ - workers should exit when the channel closes

}

^^/ Distributes work items to workers
async fn distribute_work(work_tx: mpsc^:Sender<WorkItem>, items: Vec<WorkItem>) {

^/ - send each item through the channel
}

^^/ Collects all results from workers
async fn collect_results(mut result_rx: mpsc^:Receiver<WorkResult>) ^> Vec<WorkResult> {

^/ - receive all results until the channel closes
^/ - return them as a vector

}

^[tokio^:main]
async fn main() {

let items: Vec<WorkItem> = (0^.10)
.map(|i| WorkItem {

id: i,
data: format!("item_{}", i),

})
.collect();

let num_workers = 3;
let (work_tx, work_rx) = mpsc^:channel(32);
let (result_tx, result_rx) = mpsc^:channel(32);

^/ spawn the worker pool
let workers = tokio^:spawn(spawn_workers(num_workers, work_rx, result_tx));

^/ distribute work
distribute_work(work_tx, items).await;

^/ collect results
let results = collect_results(result_rx).await;

^/ wait for workers to finish
workers.await.unwrap();

println!("Processed {} items:", results.len());
for result in &results {

println!(" {} ^> {}", result.id, result.processed);
}

2

assert_eq!(results.len(), 10);
}

Exercise 2: Select and Timeout Patterns
Objective
Implement a request handler with timeout and cancellation support using select!.

Instructions
Implement a system that:

1. Processes requests with a configurable timeout
2. Supports graceful shutdown via a cancellation signal
3. Handles multiple concurrent operations with select!

Requirements
use std^:time^:Duration;
use tokio^:sync^:{mpsc, oneshot};
use tokio^:time^:timeout;

^^/ A request to be processed
^[derive(Debug)]
struct Request {

id: u32,
payload: String,
^^/ channel to send the response back
response_tx: oneshot^:Sender<Response>,

}

^^/ Response to a request
^[derive(Debug)]
struct Response {

id: u32,
result: Result<String, RequestError>,

}

^[derive(Debug)]
enum RequestError {

Timeout,
Cancelled,
ProcessingFailed(String),

}

^^/ Simulates processing a request (don't modify)
async fn do_processing(payload: &str) ^> Result<String, String> {

^/ simulate variable processing time
let delay = (payload.len() * 50) as u64;
tokio^:time^:sleep(Duration^:from_millis(delay)).await;

if payload.contains("fail") {
Err("processing failed".to_string())

3

} else {
Ok(format!("processed: {}", payload))

}
}

^^/ Processes a single request with timeout
async fn process_with_timeout(

request: Request,
timeout_duration: Duration,

) {
^/ - use tokio^:time^:timeout to wrap do_processing
^/ - send appropriate Response back through request.response_tx
^/ - handle timeout and processing errors

}

^^/ Runs the request processing loop with shutdown support
async fn run_processor(

mut request_rx: mpsc^:Receiver<Request>,
mut shutdown_rx: oneshot^:Receiver<()>,
timeout_duration: Duration,

) {
^/ - process incoming requests
^/ - stop when shutdown signal received
^/ - handle channel closure gracefully

}

^^/ Sends a request and waits for response
async fn send_request(

request_tx: &mpsc^:Sender<Request>,
id: u32,
payload: String,

) ^> Response {
^/ - create a oneshot channel for the response
^/ - send the request
^/ - wait for and return the response

}

^[tokio^:main]
async fn main() {

let (request_tx, request_rx) = mpsc^:channel(32);
let (shutdown_tx, shutdown_rx) = oneshot^:channel();

let timeout_duration = Duration^:from_millis(600);

^/ spawn the processor
let processor = tokio^:spawn(run_processor(request_rx, shutdown_rx, timeout_duration));

^/ send some requests
let payloads = vec!["hi", "hello world", "fail please", "aaaaaaaaaaaaaaaaaaaaaa"];

let mut responses = Vec^:new();
for (i, payload) in payloads.iter().enumerate() {

let response = send_request(&request_tx, i as u32, payload.to_string()).await;
println!("Request {}: {^?}", i, response.result);

4

responses.push(response);
}

^/ shutdown
drop(request_tx);
let _ = shutdown_tx.send(());
processor.await.unwrap();

^/ verify results
assert!(responses[0].result.is_ok()); ^/ "hi" - fast, succeeds
assert!(responses[1].result.is_ok()); ^/ "hello world" - medium, succeeds
assert!(matches!(

responses[2].result,
Err(RequestError^:ProcessingFailed(_))

)); ^/ contains "fail"
assert!(matches!(responses[3].result, Err(RequestError^:Timeout))); ^/ too long

}

Exercise 3: Async TCP Chat Server
Objective
Build a simple TCP chat server that handles multiple clients concurrently.

Instructions
Implement a chat server that:

1. Accepts multiple TCP connections
2. Broadcasts messages from any client to all connected clients
3. Handles client disconnections gracefully
4. Uses async I/O for all operations

Requirements
use std^:collections^:HashMap;
use std^:sync^:Arc;
use tokio^:io^:{AsyncBufReadExt, AsyncWriteExt, BufReader};
use tokio^:net^:{TcpListener, TcpStream};
use tokio^:sync^:{broadcast, Mutex};

type ClientId = u32;

^^/ Shared state for the chat server
struct ChatServer {

^^/ broadcast channel for messages
broadcast_tx: broadcast^:Sender<ChatMessage>,
^^/ connected clients (id ^> username)
clients: Mutex<HashMap<ClientId, String^>,
^^/ counter for generating client ids
next_id: Mutex<ClientId>,

}

^[derive(Clone, Debug)]

5

struct ChatMessage {
from: String,
content: String,

}

impl ChatServer {
fn new() ^> Arc<Self> {

let (broadcast_tx, _) = broadcast^:channel(100);
Arc^:new(Self {

broadcast_tx,
clients: Mutex^:new(HashMap^:new()),
next_id: Mutex^:new(0),

})
}

^^/ Registers a new client and returns their id
async fn register_client(&self, username: String) ^> ClientId {

^/ TODO: implement this function
^/ - generate a new client id
^/ - store the username
^/ - return the id

}

^^/ Removes a client from the server
async fn remove_client(&self, id: ClientId) {

^/ TODO: implement this function
}

^^/ Broadcasts a message to all clients
fn broadcast(&self, message: ChatMessage) {

^/ TODO: implement this function
^/ - send message through broadcast channel
^/ - ignore errors (no receivers is fine)

}

^^/ Returns a receiver for broadcast messages
fn subscribe(&self) ^> broadcast^:Receiver<ChatMessage> {

self.broadcast_tx.subscribe()
}

}

^^/ Handles a single client connection
async fn handle_client(server: Arc<ChatServer>, stream: TcpStream) {

^/ - split the stream into reader and writer
^/ - read the first line as the username
^/ - register the client
^/ - announce that they joined
^/ - spawn a task to forward broadcast messages to this client
^/ - read lines from the client and broadcast them
^/ - handle disconnection (remove client, announce departure)
^/
^/ hints:
^/ - use BufReader for line-based reading
^/ - use stream.into_split() to get separate read/write halves

6

^/ - use tokio^:select! to handle reading and shutdown
}

^^/ Runs the chat server
async fn run_server(addr: &str) ^> std^:io^:Result<()> {

^/ - bind to the address
^/ - create the ChatServer
^/ - accept connections in a loop
^/ - spawn a task for each connection

}

^[tokio^:main]
async fn main() ^> std^:io^:Result<()> {

println!("Starting chat server on 127.0.0.1:8080");
println!("Connect with: nc 127.0.0.1 8080");
println!("First line you send will be your username");

run_server("127.0.0.1:8080").await
}

Client
Implement a chat client that connects to the server. Place this in src/bin/client.rs.

use tokio^:io^:{AsyncBufReadExt, AsyncWriteExt, BufReader};
use tokio^:net^:TcpStream;

^^/ Reads lines from stdin and sends them to the server
async fn send_messages(mut writer: tokio^:net^:tcp^:OwnedWriteHalf) {

^/ - read lines from stdin using BufReader
^/ - send each line to the server
^/ - exit when stdin closes
^/
^/ hint: use tokio^:io^:stdin() for async stdin

}

^^/ Receives messages from the server and prints them
async fn receive_messages(reader: tokio^:net^:tcp^:OwnedReadHalf) {

^/ - read lines from the server
^/ - print each line to stdout
^/ - exit when connection closes

}

^[tokio^:main]
async fn main() ^> std^:io^:Result<()> {

let addr = std^:env^:args()
.nth(1)
.unwrap_or_else(^| "127.0.0.1:8080".to_string());

let username = std^:env^:args()
.nth(2)
.unwrap_or_else(^| "anonymous".to_string());

^/ - connect to the server
^/ - send the username as the first line

7

^/ - split the stream into reader and writer
^/ - spawn tasks for sending and receiving
^/ - wait for either task to finish (use select!)

Ok(())
}

To test, run the server and client in separate terminals:

terminal 1: run the server
cargo run

terminal 2: run a client
cargo run --bin client -- 127.0.0.1:8080 alice

terminal 3: run another client
cargo run --bin client -- 127.0.0.1:8080 bob

8

	Exercise 1: Task Spawning and Channels
	Objective
	Instructions
	Requirements

	Exercise 2: Select and Timeout Patterns
	Objective
	Instructions
	Requirements

	Exercise 3: Async TCP Chat Server
	Objective
	Instructions
	Requirements
	Client

