Advanced Rust - Lab 7: Async Programming

Lukas Hozda

2026

Exercise 1: Task Spawning and Channels

Objective

Build a parallel work distribution system using async tasks and channels.

Instructions
Implement a system that:

1. Spawns multiple worker tasks

2. Distributes work items to workers via a channel
3. Collects results from workers via another channel
4. Processes all results

Requirements

use tokio::sync::mpsc;

/// Represents a work item to process
#{derive (Debug)]
struct WorkItem {

id: u32,

data: String,

/// Represents the result of processing a work item
derive (Debug)]
struct WorkResult {

id: u32,

processed: String,

s/ Simulates processing a work item
/// Keep like this or do something funny that takes time
async fn process_item(item: WorkItem) — WorkResult {
// simulate some async work
tokio::time::sleep(tokio::time::Duration:: from_millis(100)).await;
WorkResult {
id: item.id,
processed: item.data.to_uppercase(),

/// Spawns worker tasks that receive work items and send back results
async fn spawn_workers/(
num_workers: usize,
work_rx: mpsc::Receiver<WorkItem>,
result_tx: mpsc::Sender<WorkResult>,
) 1
// - convert work_rx into a shared receiver (hint: Arc<Mutex< ... >>)
// - spawn num_workers tasks
// - each worker should loop, receiving items and sending results
// - workers should exit when the channel closes

/// Distributes work items to workers
async fn distribute_work(work_tx: mpsc::Sender<WorkItem>, items: Vec<WorkItem>) {
// - send each item through the channel

/// Collects all results from workers

async fn collect_results(mut result_rx: mpsc::Receiver<WorkResult>) — Vec<WorkResult> {
// - receive all results until the channel closes
// - return them as a vector

#{ tokio::main]
async fn main() {
let items: Vec<WorkItem> = (0..10)
.map(li| WorkItem {
id: i,
data: format!("item_{}", i),
1)
.collect();

let num_workers = 3;
let (work_tx, work_rx) = mpsc::channel(32);
let (result_tx, result_rx) = mpsc::channel(32);

// spawn the worker pool
let workers = tokio::spawn(spawn_workers(num_workers, work_rx, result_tx));

// distribute work
distribute_work(work_tx, items).await;

// collect results
let results = collect_results(result_rx).await;

// wait for workers to finish
workers.await.unwrap();

println!("Processed {} items:", results.len());
for result in &results {
println! (" {} — {}", result.id, result.processed);

assert_eq! (results.len(), 10);

Exercise 2: Select and Timeout Patterns

Objective

Implement a request handler with timeout and cancellation support using select!.

Instructions
Implement a system that:

1. Processes requests with a configurable timeout
2. Supports graceful shutdown via a cancellation signal
3. Handles multiple concurrent operations with select!

Requirements

use std::time::Duration;
use tokio::sync:: {mpsc, oneshot};
use tokio::time::timeout;

s/ A request to be processed
derive(Debug)]
struct Request {
id: u32,
payload: String,
/// channel to send the response back
response_tx: oneshot :: Sender<Response>,

/// Response to a request
derive(Debug)]
struct Response {
id: u32,
result: Result<String, RequestError>,

derive (Debug)]

enum RequestError {
Timeout,
Cancelled,
ProcessingFailed(String),

/// Simulates processing a request (don't modify)

async fn do_processing(payload: &str) — Result<String, String> {
// simulate variable processing time
let delay = (payload.len() * 50) as u6é4;
tokio:: time::sleep(Duration:: from_millis(delay)).await;

if payload.contains("fail") {
Err("processing failed".to_string())

1 else {
Ok (format!("processed: {}", payload))

/// Processes a single request with timeout
async fn process_with_timeout (
request: Request,
timeout_duration: Duration,
)
// - use tokio::time::timeout to wrap do_processing
// - send appropriate Response back through request.response_tx
// - handle timeout and processing errors

/// Runs the request processing loop with shutdown support
async fn run_processor (
mut request_rx: mpsc::Receiver<Request>,
mut shutdown_rx: oneshot ::Receiver<()>,
timeout_duration: Duration,
)
// - process incoming requests
// - stop when shutdown signal received
// - handle channel closure gracefully

/// Sends a request and waits for response
async fn send_request(
request_tx: &mpsc::Sender<Request>,
id: u32,
payload: String,
) — Response {
// - create a oneshot channel for the response
// - send the request
// - wait for and return the response

tokio::main]

async fn main() {
let (request_tx, request_rx) = mpsc::channel(32);
let (shutdown_tx, shutdown_rx) = oneshot::channel();

let timeout_duration = Duration::from_millis(600);

// spawn the processor

let processor = tokio::spawn(run_processor(request_rx, shutdown_rx, timeout_duration));

// send some requests
let payloads = vec!["hi", "hello world", "fail please", "aaaaaaaaaaaaaaaaaaaaaa"l];

let mut responses = Vec::new();

for (i, payload) in payloads.iter().enumerate() {
let response = send_request(&request_tx, i as u32, payload.to_string()).await;
println!("Request {}: {:?}", i, response.result);

responses.push(response);

// shutdown
drop(request_tx);

let _ = shutdown_tx.send(());
processor.await.unwrap();

// verify results
assert!(responses[0].result.is_ok()); // "hi" - fast, succeeds
assert!(responses[1].result.is_ok()); // "hello world" - medium, succeeds
assert! (matches! (

responses[2].result,

Err(RequestError :: ProcessingFailed(_))
)); // contains "fail"
assert!(matches!(responses[3].result, Err(RequestError::Timeout))); // too Iong

Exercise 3: Async TCP Chat Server

Objective

Build a simple TCP chat server that handles multiple clients concurrently.

Instructions
Implement a chat server that:

1. Accepts multiple TCP connections

2. Broadcasts messages from any client to all connected clients
3. Handles client disconnections gracefully

4. Uses async 1/O for all operations

Requirements

use std::collections ::HashMap;

use std::sync::Arc;

use tokio::io:: {AsyncBufReadExt, AsyncWriteExt, BufReader};
use tokio::net::{TcpListener, TcpStream};

use tokio::sync:: {broadcast, Mutex};

type ClientId = u32;

/// Shared state for the chat server

struct ChatServer {
/// broadcast channel for messages
broadcast_tx: broadcast :: Sender<ChatMessage>,
/// connected clients (id — username)
clients: Mutex<HashMap<ClientId, String>>,
s/ counter for generating client ids
next_id: Mutex<ClientId>,

derive(Clone, Debug)]

struct ChatMessage {
from: String,
content: String,

impl ChatServer {
fn new() — Arc<Self> {
let (broadcast_tx, _) = broadcast::channel(100);

Arc::new(Self {
broadcast_tx,
clients: Mutex::new(HashMap::new()),
next_id: Mutex::new(0),

1)

/// Registers a new client and returns their id
async fn register_client(&self, username: String) — ClientId {

// TODO: implement this function
// - generate a new client id

// - store the username

// - return the id

/// Removes a client from the server
async fn remove_client(&self, id: ClientId) {

// TODO: implement this function

/// Broadcasts a message to all clients
fn broadcast(&self, message: ChatMessage) 1{

// TODO: implement this function
// - send message through broadcast channel
// - ignore errors (no receivers is fine)

/// Returns a receiver for broadcast messages
fn subscribe(&self) — broadcast::Receiver<ChatMessage> {

self.broadcast_tx.subscribe()

/// Handles a single client connection
async fn

V4
V4
V4
V4
V4
V4
V4
V4
V4

h

handle_client(server: Arc<ChatServer>, stream:

split the stream into reader and writer

read the first line as the username

register the client

announce that they joined

spawn a task to forward broadcast messages to
read lines from the client and broadcast them
handle disconnection (remove client, announce

ints:

// - use BufReader for line-based reading
// - use stream.into_split() to get separate read/write halves

TcpStream) {

this client

departure)

// - use tokio::select! to handle reading and shutdown

/// Runs the chat server
async fn run_server(addr: &str) — std::io::Result<()> {
// - bind to the address
// - create the ChatServer
// - accept connections in a loop
// - spawn a task for each connection

tokio::main]

async fn main() — std::io::Result<()> {
println!("Starting chat server on 127.0.0.1:8080");
println!("Connect with: nc 127.0.0.1 8080");
println!("First line you send will be your username");

run_server("127.0.0.1:8080") .await

Client
Implement a chat client that connects to the server. Place this in src/bin/client.rs.

use tokio::io:: {AsyncBufReadExt, AsyncWriteExt, BufReader};
use tokio::net::TcpStream;

/// Reads lines from stdin and sends them to the server
async fn send_messages(mut writer: tokio::net::tcp::OwnedWriteHalf) {
// - read lines from stdin using BufReader
// - send each line to the server
// - exit when stdin closes
V/4

// hint: use tokio::io::stdin() for async stdin

/// Receives messages from the server and prints them

async fn receive_messages(reader: tokio::net::tcp::0OwnedReadHalf) {
// - read lines from the server
// - print each line to stdout
// - exit when connection closes

#{ tokio::main]
async fn main() — std::io::Result<()> {
let addr = std::env::args()
.nth(1)
.unwrap_or_else(|| "127.0.0.1:8080".to_string());

let username = std::env::args()
.nth(2)
.unwrap_or_else(|l "anonymous".to_string());

// - connect to the server
// - send the username as the first line

// - split the stream into reader and writer
// - spawn tasks for sending and receiving
// - wait for either task to finish (use select!)

0k (())
}

To test, run the server and client in separate terminals:
terminal 1: run the server

cargo run

terminal 2: run a client
cargo run --bin client -- 127.0.0.1:8080 alice

terminal 3: run another client
cargo run --bin client -- 127.0.0.1:8080 bob

	Exercise 1: Task Spawning and Channels
	Objective
	Instructions
	Requirements

	Exercise 2: Select and Timeout Patterns
	Objective
	Instructions
	Requirements

	Exercise 3: Async TCP Chat Server
	Objective
	Instructions
	Requirements
	Client

