
Rust generics
non-deterministic 🍑

Lukáš Hozda & Luukas Pörtfors

2025-11-20
Braiins Systems s.r.o



Generics and Traits in Rust



What are Generics? 🍑

• Allows writing code that works with multiple
types

• Similar to templates in C++
• Zero-cost abstraction
• Compiler generates specialized code for each type
• Static dispatch

// Generic function
fn identity<T>(x: T) -> T {
    x
}

// Generic struct
struct Point<T> {
    x: T,
    y: T,
}
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Constrained Generics 🍑

• Rust doesn’t have classes or inheritance (in the OOP sense)
‣ instead we have traits (type classes)

• Traits define behavior for types
• Constrain generic types with trait bounds
• Specify what capabilities a type must have

// T must implement Display trait
// NOTE: The other way to do this:
// fn print_value(value: impl Display) {
fn print_value<T: Display>(value: T) {
    println!("{}", value);
}

// Multiple trait bounds
fn compare<T: PartialOrd + Clone>(a: T, b: T) -> T {
    if a > b { a } else { b }
}
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Trait Objects 🍑

• Dynamic dispatch - available for dyn compatible traits
• Runtime polymorphism
• Use dyn keyword (is !Sized)
• Allows storing different types in same collection

trait Animal {
    fn make_sound(&self);
}

fn animal_sounds(animals: &[Box<dyn Animal>]) {
    for animal in animals {
        animal.make_sound();
    }
}
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Default Trait Implementations 🍑

• Traits can provide default method implementations
• Types can override or use default behavior

trait Logger {
    fn log(&self, message: &str) {
        println!("Default log: {}", message);
    }
}

struct FileLogger;
impl Logger for FileLogger {
    // Uses default implementation
}
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Derive Macros 🍑

• Automatically implement common traits
• Reduces boilerplate code
• Many standard library traits supported

#[derive(Debug, Clone, PartialEq)]
struct Person {
    name: String,
    age: u32,
}
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Generic Associated Types 🍑

• Allows defining associated types in traits
• Provides more flexibility in generic code

trait Container {
    type Item;
    fn contains(&self, item: &Self::Item) -> bool;
}

impl Container for Vec<i32> {
    type Item = i32;
    fn contains(&self, item: &i32) -> bool {
        self.contains(item)
    }
}
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Trait Bounds in Method Definitions 🍑

• Constrain method type parameters
• Ensure methods only work with types that meet requirements

impl<T: Display + Clone> MyStruct<T> {
    fn print_value(&self, value: T) {
        println!("{}", value.clone());
    }
}
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Where Clauses 🍑

• Alternative syntax for trait bounds
• More readable for complex constraints
• Can refer to anything, not just Self or params

fn process<T>(value: T)
where
    T: Display + Clone,
    T: PartialOrd
{
    // Method body
}
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Dyn compatibility in Rust



What is Dyn compatibility? 🍑

• Formerly known as object safety
• Defines which traits can be used with trait objects
• Enables dynamic dispatch
• Requires specific rules to be followed
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Dyn compatibility rules 🍑

• Method must not have any type parameters
• Method must not use Self except as return value
• Method must not have static method requirements
• We can use the Self: Sized bound to include methods that don’t match above

requirements
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🍑

// dyn-incompatible
trait NotSafe<T> {
    fn generic_method<U>(x: T, y: U);
    fn uses_self(self: Self) -> Self;
}

// Dyn compatible
trait Safe {
    fn concrete_method(&self, x: i32);
    fn returns_self(&self) -> Box<dyn Safe>;
}
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Example of Dyn compatibility 🍑

// this works
trait Animal {
    fn make_sound(&self);
}

// this doesn't
trait Comparable<T> {
    fn compare(&self, other: &T) -> bool;
}

// can create trait objects for Animal
let animals: Vec<Box<dyn Animal>> = vec![];
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Common traits 🍑

• Iterator:
‣ implement the next()¹ method and get 75 other methods for free

• Often seen in the wild: #[derive(Debug, Clone)]
• Display

‣ allows the value to be formatted (also automatically implements ToString)
• Operators like Add are traits
• From and Into

‣ allow conversion between types, prefer implementing From
‣ From<T> for U implies Into<U> for T

• Drop, the destructor trait in Rust

¹https://doc.rust-lang.org/std/iter/index.html#implementing-iterator
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Marker traits 🍑

• Interesting detail of the type system not seen outside Rust

• Send, Sync, Copy, Sized, Unpin

• Don’t include any methods

• Instead tell the compiler something about how the type behaves
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Orphan rules 🍑

• prevent implementing a trait for a type unless either trait or the type is defined in your
current crate

• They exist to enforce trait coherende¹
‣ there must be at most one implementation of a trait for any given type

• They can sometimes get in the way, easiest resolved by using wrappers

struct MyVec(Vec);

impl ForeignTrait for MyVec {}

¹https://github.com/Ixrec/rust-orphan-rules?tab=readme-ov-file#what-is-coherence
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