
Rust generics
non-deterministic 🍑

Lukáš Hozda & Luukas Pörtfors

2025-11-20
Braiins Systems s.r.o

Generics and Traits in Rust

What are Generics? 🍑

• Allows writing code that works with multiple
types

• Similar to templates in C++
• Zero-cost abstraction
• Compiler generates specialized code for each type
• Static dispatch

// Generic function
fn identity<T>(x: T) -> T {
 x
}

// Generic struct
struct Point<T> {
 x: T,
 y: T,
}

2 / 17

Constrained Generics 🍑

• Rust doesn’t have classes or inheritance (in the OOP sense)
‣ instead we have traits (type classes)

• Traits define behavior for types
• Constrain generic types with trait bounds
• Specify what capabilities a type must have

// T must implement Display trait
// NOTE: The other way to do this:
// fn print_value(value: impl Display) {
fn print_value<T: Display>(value: T) {
 println!("{}", value);
}

// Multiple trait bounds
fn compare<T: PartialOrd + Clone>(a: T, b: T) -> T {
 if a > b { a } else { b }
}

3 / 17

Trait Objects 🍑

• Dynamic dispatch - available for dyn compatible traits
• Runtime polymorphism
• Use dyn keyword (is !Sized)
• Allows storing different types in same collection

trait Animal {
 fn make_sound(&self);
}

fn animal_sounds(animals: &[Box<dyn Animal>]) {
 for animal in animals {
 animal.make_sound();
 }
}

4 / 17

Default Trait Implementations 🍑

• Traits can provide default method implementations
• Types can override or use default behavior

trait Logger {
 fn log(&self, message: &str) {
 println!("Default log: {}", message);
 }
}

struct FileLogger;
impl Logger for FileLogger {
 // Uses default implementation
}

5 / 17

Derive Macros 🍑

• Automatically implement common traits
• Reduces boilerplate code
• Many standard library traits supported

#[derive(Debug, Clone, PartialEq)]
struct Person {
 name: String,
 age: u32,
}

6 / 17

Generic Associated Types 🍑

• Allows defining associated types in traits
• Provides more flexibility in generic code

trait Container {
 type Item;
 fn contains(&self, item: &Self::Item) -> bool;
}

impl Container for Vec<i32> {
 type Item = i32;
 fn contains(&self, item: &i32) -> bool {
 self.contains(item)
 }
}

7 / 17

Trait Bounds in Method Definitions 🍑

• Constrain method type parameters
• Ensure methods only work with types that meet requirements

impl<T: Display + Clone> MyStruct<T> {
 fn print_value(&self, value: T) {
 println!("{}", value.clone());
 }
}

8 / 17

Where Clauses 🍑

• Alternative syntax for trait bounds
• More readable for complex constraints
• Can refer to anything, not just Self or params

fn process<T>(value: T)
where
 T: Display + Clone,
 T: PartialOrd
{
 // Method body
}

9 / 17

Dyn compatibility in Rust

What is Dyn compatibility? 🍑

• Formerly known as object safety
• Defines which traits can be used with trait objects
• Enables dynamic dispatch
• Requires specific rules to be followed

11 / 17

Dyn compatibility rules 🍑

• Method must not have any type parameters
• Method must not use Self except as return value
• Method must not have static method requirements
• We can use the Self: Sized bound to include methods that don’t match above

requirements

12 / 17

🍑

// dyn-incompatible
trait NotSafe<T> {
 fn generic_method<U>(x: T, y: U);
 fn uses_self(self: Self) -> Self;
}

// Dyn compatible
trait Safe {
 fn concrete_method(&self, x: i32);
 fn returns_self(&self) -> Box<dyn Safe>;
}

13 / 17

Example of Dyn compatibility 🍑

// this works
trait Animal {
 fn make_sound(&self);
}

// this doesn't
trait Comparable<T> {
 fn compare(&self, other: &T) -> bool;
}

// can create trait objects for Animal
let animals: Vec<Box<dyn Animal>> = vec![];

14 / 17

Common traits 🍑

• Iterator:
‣ implement the next()¹ method and get 75 other methods for free

• Often seen in the wild: #[derive(Debug, Clone)]
• Display

‣ allows the value to be formatted (also automatically implements ToString)
• Operators like Add are traits
• From and Into

‣ allow conversion between types, prefer implementing From
‣ From<T> for U implies Into<U> for T

• Drop, the destructor trait in Rust

¹https://doc.rust-lang.org/std/iter/index.html#implementing-iterator
15 / 17

https://doc.rust-lang.org/std/iter/index.html#implementing-iterator

Marker traits 🍑

• Interesting detail of the type system not seen outside Rust

• Send, Sync, Copy, Sized, Unpin

• Don’t include any methods

• Instead tell the compiler something about how the type behaves

16 / 17

Orphan rules 🍑

• prevent implementing a trait for a type unless either trait or the type is defined in your
current crate

• They exist to enforce trait coherende¹
‣ there must be at most one implementation of a trait for any given type

• They can sometimes get in the way, easiest resolved by using wrappers

struct MyVec(Vec);

impl ForeignTrait for MyVec {}

¹https://github.com/Ixrec/rust-orphan-rules?tab=readme-ov-file#what-is-coherence
17 / 17

https://github.com/Ixrec/rust-orphan-rules?tab=readme-ov-file#what-is-coherence

	Generics and Traits in Rust
	What are Generics?
	Constrained Generics
	Trait Objects
	Default Trait Implementations
	Derive Macros
	Generic Associated Types
	Trait Bounds in Method Definitions
	Where Clauses

	Dyn compatibility in Rust
	What is Dyn compatibility?
	Dyn compatibility rules
	
	Example of Dyn compatibility
	Common traits
	Marker traits
	Orphan rules

