
Advanced Rust - Lab 2: The Borrow Checker

Lukáš Hozda

2025

Introduction
Don Quixote against the borrow checker wind mills

Exercise 1: Understanding Lifetime Annotations (10 minutes)
Objective
Implement functions with complex lifetime relationships and understand their implications.

Instructions
Create the following functions with proper lifetime annotations:

1. A function that returns the longest slice among three input slices
2. A function that combines data from multiple sources with different lifetimes

Requirements
Implement the following signatures with appropriate lifetime annotations:

^/ return the longest of three string slices
fn longest_slice(x: &str, y: &str, z: &str) ^> &str {

^/ TODO: Implement
}

^/ storing references in a struct
struct MultiRef {

name: ^* reference to a string ^/,
values: ^* reference to a vector of integers ^/

}

impl MultiRef {
^/ constructor that takes references with different lifetimes
fn new(n: &str, v: &Vec<i32>) ^> MultiRef {

^/ TODO: Implement
}

^/ method that returns the first value if available
fn first_value(&self) ^> Option<&i32> {

^/ TODO: Implement
}

}

1

Questions to Consider
1. Why are explicit lifetime parameters necessary in these examples?

Exercise 2: Higher-Rank Trait Bounds (20 minutes)
Objective
Implement functions that work with higher-rank trait bounds for lifetime-agnostic callbacks.

Instructions
Create functions that:

1. Apply a callback to each element in a slice, where the callback works with any lifetime
2. Define a struct that holds a function accepting references of any lifetime

Requirements
^/ 1. A function that applies a transformation to each element in a slice
^/ The callback should work with any possible lifetime
fn transform_elements<T, F, O>(slice: &[T], callback: F) ^> Vec<O>
where

^/ TODO: Add appropriate HRTB bounds
{

^/ TODO: Implement
}

^/ 2. A struct that holds a callback working with references of any lifetime
struct CallbackHolder<F> {

callback: F,
}

impl<F> CallbackHolder<F> {
fn new(callback: F) ^> Self {

CallbackHolder { callback }
}

^/ Call method that works with any reference
fn call_with<T>(&self, value: &T) ^> ^* return type ^/
where

^/ TODO: Add appropriate bounds
{

^/ TODO: Implement
}

}

^/ Example usage
fn example_usage() {

^/ Example using transform_elements
let numbers = vec![1, 2, 3, 4, 5];
let squares = transform_elements(&numbers, |x| x * x);

^/ Example using CallbackHolder
let string_length = CallbackHolder^:new(|s: &str| s.len());

2

let len = string_length.call_with("hello");
assert_eq!(len, 5);

}

Questions to Consider
1. Why do we need higher-rank trait bounds in these examples?
2. How does the syntax ‘for<'a>‘ differ from simply adding a lifetime parameter?

Exercise 3: Disjoint Borrowing Patterns (20 minutes)
Objective
Learn techniques for working with multiple mutable references safely.

Instructions
Implement the following structures and functions that demonstrate how to:

1. Simultaneously borrow different parts of a data structure
2. Split mutable collections to obtain multiple mutable references
3. Use interior mutability when appropriate

Requirements
^/ 1. A struct with methods that mutate different fields at the same time
struct Person {

name: String,
age: u32,
address: String,

}

impl Person {
^/ TODO: Implement a method that mutates both name and age simultaneously

^/ TODO: Implement a method that mutates both name and address simultaneously
}

^/ 2. Function that processes different parts of a vector in parallel
fn process_halves(data: &mut Vec<i32>) {

^/ TODO: Split the vector into two parts and modify them independently
}

^/ 3. A safe API for a matrix that allows mutating different rows simultaneously
struct Matrix<T> {

data: Vec<Vec<T^>,
rows: usize,
cols: usize,

}

impl<T> Matrix<T> {
fn new(rows: usize, cols: usize, default_value: T) ^> Self
where

T: Clone
{

3

^/ TODO: Implement
}

^/ Get mutable references to two different rows
fn get_two_rows_mut(&mut self, row1: usize, row2: usize) ^> Option<(&mut Vec<T>, &mut Vec<T>)> {

^/ TODO: Implement - return None if row1 ^= row2 or either is out of bounds
}

}

Questions to Consider
1. How does the borrow checker understand when references are disjoint?

Exercise 4: Diagnosing and Fixing Borrow Checker Errors (20 min-
utes)
Objective
Identify and fix common borrow checker errors in code examples.

Instructions
For each code snippet below:

1. Identify why the code doesn't compile
2. Fix the code to satisfy the borrow checker
3. Explain your solution

Code Snippet 1: Dangling References
fn first_word(s: &str) ^> &str {

let bytes = s.as_bytes();

for (i, &item) in bytes.iter().enumerate() {
if item ^= b' ' {

return &s[0^.i];
}

}

&s[^.]
}

fn main() {
let word;
{

let s = String^:from("hello world");
word = first_word(&s);

}
println!("the first word is: {}", word);

}

4

Code Snippet 2: Multiple Mutable Borrows
fn main() {

let mut v = vec![1, 2, 3, 4];
let first = &mut v[0];
let last = &mut v[v.len() - 1];

*first += 10;
*last += 20;

println!("First: {}, Last: {}", first, last);
println!("Vector: {^?}", v);

}

Code Snippet 3: Moving a Value While Borrowed
struct Counter {

count: usize,
}

impl Counter {
fn new() ^> Self {

Counter { count: 0 }
}

fn increment(&mut self) {
self.count += 1;

}

fn count(&self) ^> usize {
self.count

}
}

fn main() {
let mut counter = Counter^:new();
let count_ref = &counter.count;

counter.increment();
println!("Count via reference: {}", count_ref);
println!("Count via method: {}", counter.count());

}

Code Snippet 4: Self-Referential Struct
struct Parser {

data: String,
current_position: usize,
^/ This field tries to point into the data field
current_token: Option<&str>,

}

impl Parser {
fn new(data: String) ^> Self {

let mut parser = Parser {

5

data,
current_position: 0,
current_token: None,

};

if !parser.data.is_empty() {
^/ Try to set current_token to the first character of data
parser.current_token = Some(&parser.data[0^.1]);

}

parser
}

}

fn main() {
let parser = Parser^:new(String^:from("hello"));
println!("Token: {^?}", parser.current_token);

}

6

	Introduction
	Exercise 1: Understanding Lifetime Annotations (10 minutes)
	Objective
	Instructions
	Requirements
	Questions to Consider

	Exercise 2: Higher-Rank Trait Bounds (20 minutes)
	Objective
	Instructions
	Requirements
	Questions to Consider

	Exercise 3: Disjoint Borrowing Patterns (20 minutes)
	Objective
	Instructions
	Requirements
	Questions to Consider

	Exercise 4: Diagnosing and Fixing Borrow Checker Errors (20 minutes)
	Objective
	Instructions
	Code Snippet 1: Dangling References
	Code Snippet 2: Multiple Mutable Borrows
	Code Snippet 3: Moving a Value While Borrowed
	Code Snippet 4: Self-Referential Struct

