
Zen and the art of library maintenance 🔑

Lukáš Hozda

2025-04-10
Braiins Systems s.r.o

Zen and the Art of Library Maintenance 🔑

Zen and the Art of Motorcycle Maintenance by Robert Pirsig - Good book about
quality

1 / 34

Writing libraries and testing 🔑

• General principles
• Rust design
• Testing
• Maintenance

2 / 34

General principles

General principles 🔑

• There are some general points to consider when writing a library

4 / 34

General principles 🔑

• There are some general points to consider when writing a library
• Consistency

4 / 34

General principles 🔑

• There are some general points to consider when writing a library
• Consistency
• API stability

4 / 34

General principles 🔑

• There are some general points to consider when writing a library
• Consistency
• API stability

‣ The best library in the world is useless if I cannot rely on it not breaking completely
every release

4 / 34

General principles 🔑

• There are some general points to consider when writing a library
• Consistency
• API stability

‣ The best library in the world is useless if I cannot rely on it not breaking completely
every release

• Encapsulation

4 / 34

General principles 🔑

• There are some general points to consider when writing a library
• Consistency
• API stability

‣ The best library in the world is useless if I cannot rely on it not breaking completely
every release

• Encapsulation
‣ Data Hiding

4 / 34

General principles 🔑

• There are some general points to consider when writing a library
• Consistency
• API stability

‣ The best library in the world is useless if I cannot rely on it not breaking completely
every release

• Encapsulation
‣ Data Hiding
‣ Modularity

4 / 34

General principles 🔑

• There are some general points to consider when writing a library
• Consistency
• API stability

‣ The best library in the world is useless if I cannot rely on it not breaking completely
every release

• Encapsulation
‣ Data Hiding
‣ Modularity

• Ease of use - use the right level of abstraction, provide sensible defaults

4 / 34

General principles 🔑

• There are some general points to consider when writing a library
• Consistency
• API stability

‣ The best library in the world is useless if I cannot rely on it not breaking completely
every release

• Encapsulation
‣ Data Hiding
‣ Modularity

• Ease of use - use the right level of abstraction, provide sensible defaults
• Technical aspects

4 / 34

General principles 🔑

• There are some general points to consider when writing a library
• Consistency
• API stability

‣ The best library in the world is useless if I cannot rely on it not breaking completely
every release

• Encapsulation
‣ Data Hiding
‣ Modularity

• Ease of use - use the right level of abstraction, provide sensible defaults
• Technical aspects

‣ Performance

4 / 34

General principles 🔑

• There are some general points to consider when writing a library
• Consistency
• API stability

‣ The best library in the world is useless if I cannot rely on it not breaking completely
every release

• Encapsulation
‣ Data Hiding
‣ Modularity

• Ease of use - use the right level of abstraction, provide sensible defaults
• Technical aspects

‣ Performance
‣ Achievement of its goals

4 / 34

General principles 🔑

• There are some general points to consider when writing a library
• Consistency
• API stability

‣ The best library in the world is useless if I cannot rely on it not breaking completely
every release

• Encapsulation
‣ Data Hiding
‣ Modularity

• Ease of use - use the right level of abstraction, provide sensible defaults
• Technical aspects

‣ Performance
‣ Achievement of its goals

• Licensing

4 / 34

General principles 🔑

• There are some general points to consider when writing a library
• Consistency
• API stability

‣ The best library in the world is useless if I cannot rely on it not breaking completely
every release

• Encapsulation
‣ Data Hiding
‣ Modularity

• Ease of use - use the right level of abstraction, provide sensible defaults
• Technical aspects

‣ Performance
‣ Achievement of its goals

• Licensing
‣ No serious developer will touch your “OSS” library if you forget a license

4 / 34

Consistency 🔑

• Similar things should be done the same way as much as possible

5 / 34

Consistency 🔑

6 / 34

Consistency 🔑

• Similar things should be done the same way as much as possible
• Suppose we are writing a library for rational arithmetic (with fractions)

6 / 34

Consistency 🔑

6 / 34

Consistency 🔑

• Similar things should be done the same way as much as possible
• Suppose we are writing a library for rational arithmetic (with fractions)

‣ We have a Fraction type

6 / 34

Consistency 🔑

6 / 34

Consistency 🔑

• Similar things should be done the same way as much as possible
• Suppose we are writing a library for rational arithmetic (with fractions)

‣ We have a Fraction type
‣ Methods:

6 / 34

Consistency 🔑

6 / 34

Consistency 🔑

• Similar things should be done the same way as much as possible
• Suppose we are writing a library for rational arithmetic (with fractions)

‣ We have a Fraction type
‣ Methods:

– add(other_frac)
– subtract(other_frac)
– multiply(other_frac)
– divide(other_frac)

6 / 34

Consistency 🔑

6 / 34

Consistency 🔑

• Similar things should be done the same way as much as possible
• Suppose we are writing a library for rational arithmetic (with fractions)

‣ We have a Fraction type
‣ Methods:

– add(other_frac)
– subtract(other_frac)
– multiply(other_frac)
– divide(other_frac)

‣ Bad: divide() and multiply() mutate the original, add() and subtract() return new Fraction

6 / 34

Consistency 🔑

6 / 34

Consistency 🔑

• Similar things should be done the same way as much as possible
• Suppose we are writing a library for rational arithmetic (with fractions)

‣ We have a Fraction type
‣ Methods:

– add(other_frac)
– subtract(other_frac)
– multiply(other_frac)
– divide(other_frac)

‣ Bad: divide() and multiply() mutate the original, add() and subtract() return new Fraction
‣ Good: they all return a new Fraction and are consistent with primitive numbers’

operators

6 / 34

Consistency 🔑

6 / 34

Consistency 🔑

• Similar things should be done the same way as much as possible
• Suppose we are writing a library for rational arithmetic (with fractions)

‣ We have a Fraction type
‣ Methods:

– add(other_frac)
– subtract(other_frac)
– multiply(other_frac)
– divide(other_frac)

‣ Bad: divide() and multiply() mutate the original, add() and subtract() return new Fraction
‣ Good: they all return a new Fraction and are consistent with primitive numbers’

operators
‣ You laugh, but I have seen this exact thing

6 / 34

Consistency 🔑

6 / 34

Consistency 🔑

• Similar things should be done the same way as much as possible
• Suppose we are writing a library for rational arithmetic (with fractions)

‣ We have a Fraction type
‣ Methods:

– add(other_frac)
– subtract(other_frac)
– multiply(other_frac)
– divide(other_frac)

‣ Bad: divide() and multiply() mutate the original, add() and subtract() return new Fraction
‣ Good: they all return a new Fraction and are consistent with primitive numbers’

operators
‣ You laugh, but I have seen this exact thing

• Also, be consistent across things like generics

6 / 34

Consistency 🔑

• Similar things should be done the same way as much as possible
• Suppose we are writing a library for rational arithmetic (with fractions)

‣ We have a Fraction type
‣ Methods:

– add(other_frac)
– subtract(other_frac)
– multiply(other_frac)
– divide(other_frac)

‣ Bad: divide() and multiply() mutate the original, add() and subtract() return new Fraction
‣ Good: they all return a new Fraction and are consistent with primitive numbers’

operators
‣ You laugh, but I have seen this exact thing

• Also, be consistent across things like generics
‣ If my type can work with “anything that can be turned into a Path,” the constructor

should not take only a hardcoded string type
6 / 34

API stability 🔑

• API (Application Programming Interface)

7 / 34

API stability 🔑

8 / 34

API stability 🔑

• API (Application Programming Interface)
‣ You know this

8 / 34

API stability 🔑

8 / 34

API stability 🔑

• API (Application Programming Interface)
‣ You know this
‣ Types, methods, functions, constants, global variables (DONT), publicly exposed by a

library

8 / 34

API stability 🔑

8 / 34

API stability 🔑

• API (Application Programming Interface)
‣ You know this
‣ Types, methods, functions, constants, global variables (DONT), publicly exposed by a

library
• Naturally, for new libraries and SW in general, some breaking changes are unavoidable

8 / 34

API stability 🔑

8 / 34

API stability 🔑

• API (Application Programming Interface)
‣ You know this
‣ Types, methods, functions, constants, global variables (DONT), publicly exposed by a

library
• Naturally, for new libraries and SW in general, some breaking changes are unavoidable

‣ It would be pretty bad to be forever shackled to the poor decisions of your youth

8 / 34

API stability 🔑

8 / 34

API stability 🔑

• API (Application Programming Interface)
‣ You know this
‣ Types, methods, functions, constants, global variables (DONT), publicly exposed by a

library
• Naturally, for new libraries and SW in general, some breaking changes are unavoidable

‣ It would be pretty bad to be forever shackled to the poor decisions of your youth
• What we need is a good API design and versioning

8 / 34

API stability 🔑

8 / 34

API stability 🔑

• API (Application Programming Interface)
‣ You know this
‣ Types, methods, functions, constants, global variables (DONT), publicly exposed by a

library
• Naturally, for new libraries and SW in general, some breaking changes are unavoidable

‣ It would be pretty bad to be forever shackled to the poor decisions of your youth
• What we need is a good API design and versioning
• Good API design

8 / 34

API stability 🔑

8 / 34

API stability 🔑

• API (Application Programming Interface)
‣ You know this
‣ Types, methods, functions, constants, global variables (DONT), publicly exposed by a

library
• Naturally, for new libraries and SW in general, some breaking changes are unavoidable

‣ It would be pretty bad to be forever shackled to the poor decisions of your youth
• What we need is a good API design and versioning
• Good API design

‣ Maximum flexibility, minimal surface (if you expose the entirety of your library, every
change is a breaking API change)

8 / 34

API stability 🔑

8 / 34

API stability 🔑

• API (Application Programming Interface)
‣ You know this
‣ Types, methods, functions, constants, global variables (DONT), publicly exposed by a

library
• Naturally, for new libraries and SW in general, some breaking changes are unavoidable

‣ It would be pretty bad to be forever shackled to the poor decisions of your youth
• What we need is a good API design and versioning
• Good API design

‣ Maximum flexibility, minimal surface (if you expose the entirety of your library, every
change is a breaking API change)
– Allows me to do extensive rewrites of the underlying logic while maintaining the

same API

8 / 34

API stability 🔑

8 / 34

API stability 🔑

• API (Application Programming Interface)
‣ You know this
‣ Types, methods, functions, constants, global variables (DONT), publicly exposed by a

library
• Naturally, for new libraries and SW in general, some breaking changes are unavoidable

‣ It would be pretty bad to be forever shackled to the poor decisions of your youth
• What we need is a good API design and versioning
• Good API design

‣ Maximum flexibility, minimal surface (if you expose the entirety of your library, every
change is a breaking API change)
– Allows me to do extensive rewrites of the underlying logic while maintaining the

same API
• Versioning - SemVer (Semantic Versioning)

8 / 34

API stability 🔑

• API (Application Programming Interface)
‣ You know this
‣ Types, methods, functions, constants, global variables (DONT), publicly exposed by a

library
• Naturally, for new libraries and SW in general, some breaking changes are unavoidable

‣ It would be pretty bad to be forever shackled to the poor decisions of your youth
• What we need is a good API design and versioning
• Good API design

‣ Maximum flexibility, minimal surface (if you expose the entirety of your library, every
change is a breaking API change)
– Allows me to do extensive rewrites of the underlying logic while maintaining the

same API
• Versioning - SemVer (Semantic Versioning)

‣ “I can depend on the latest version that will not break my stuff”

8 / 34

API stability 🔑

8 / 34

API stability 🔑

• API (Application Programming Interface)
‣ You know this
‣ Types, methods, functions, constants, global variables (DONT), publicly exposed by a

library
• Naturally, for new libraries and SW in general, some breaking changes are unavoidable

‣ It would be pretty bad to be forever shackled to the poor decisions of your youth
• What we need is a good API design and versioning
• Good API design

‣ Maximum flexibility, minimal surface (if you expose the entirety of your library, every
change is a breaking API change)
– Allows me to do extensive rewrites of the underlying logic while maintaining the

same API
• Versioning - SemVer (Semantic Versioning)

‣ “I can depend on the latest version that will not break my stuff”
‣ Built into Cargo with a quirk

8 / 34

API stability 🔑

• API (Application Programming Interface)
‣ You know this
‣ Types, methods, functions, constants, global variables (DONT), publicly exposed by a

library
• Naturally, for new libraries and SW in general, some breaking changes are unavoidable

‣ It would be pretty bad to be forever shackled to the poor decisions of your youth
• What we need is a good API design and versioning
• Good API design

‣ Maximum flexibility, minimal surface (if you expose the entirety of your library, every
change is a breaking API change)
– Allows me to do extensive rewrites of the underlying logic while maintaining the

same API
• Versioning - SemVer (Semantic Versioning)

‣ “I can depend on the latest version that will not break my stuff”
‣ Built into Cargo with a quirk => “1.0.0” considered to be “^1.0.0”

8 / 34

Encapsulation 🔑

• Data hiding

9 / 34

Encapsulation 🔑

• Data hiding
‣ Your library should only expose what needs to be exposed

9 / 34

Encapsulation 🔑

• Data hiding
‣ Your library should only expose what needs to be exposed
‣ Consider private visibility the default, and mark stuff as public when needed

9 / 34

Encapsulation 🔑

• Data hiding
‣ Your library should only expose what needs to be exposed
‣ Consider private visibility the default, and mark stuff as public when needed

– In the context of Rust, only mark the actual API as pub, use pub(crate) if something
needs to be accessible everywhere in your lib

9 / 34

Encapsulation 🔑

• Data hiding
‣ Your library should only expose what needs to be exposed
‣ Consider private visibility the default, and mark stuff as public when needed

– In the context of Rust, only mark the actual API as pub, use pub(crate) if something
needs to be accessible everywhere in your lib

‣ Hiding the internal state of your objects is good for both rewrites and security

9 / 34

Encapsulation 🔑

• Data hiding
‣ Your library should only expose what needs to be exposed
‣ Consider private visibility the default, and mark stuff as public when needed

– In the context of Rust, only mark the actual API as pub, use pub(crate) if something
needs to be accessible everywhere in your lib

‣ Hiding the internal state of your objects is good for both rewrites and security (You do
not need to account for the possibility that someone writes invalid values into your
struct’s fields)

9 / 34

Encapsulation 🔑

• Data hiding
‣ Your library should only expose what needs to be exposed
‣ Consider private visibility the default, and mark stuff as public when needed

– In the context of Rust, only mark the actual API as pub, use pub(crate) if something
needs to be accessible everywhere in your lib

‣ Hiding the internal state of your objects is good for both rewrites and security (You do
not need to account for the possibility that someone writes invalid values into your
struct’s fields)

• Modularity

9 / 34

Encapsulation 🔑

• Data hiding
‣ Your library should only expose what needs to be exposed
‣ Consider private visibility the default, and mark stuff as public when needed

– In the context of Rust, only mark the actual API as pub, use pub(crate) if something
needs to be accessible everywhere in your lib

‣ Hiding the internal state of your objects is good for both rewrites and security (You do
not need to account for the possibility that someone writes invalid values into your
struct’s fields)

• Modularity
‣ Types understood through their interfaces as distinct units

9 / 34

Ease of use 🔑

• Quick to get started with

10 / 34

Ease of use 🔑

• Quick to get started with
• Easy to use in the correct way

10 / 34

Ease of use 🔑

• Quick to get started with
• Easy to use in the correct way
• Performant, achieve stated goal, flexible enough

10 / 34

Ease of use 🔑

• Quick to get started with
• Easy to use in the correct way
• Performant, achieve stated goal, flexible enough
• Well tested and documented

10 / 34

Ease of use 🔑

• Quick to get started with
• Easy to use in the correct way
• Performant, achieve stated goal, flexible enough
• Well tested and documented

‣ This actually helps with design, since it forces you to look at your library from a user
perspective

10 / 34

Ease of use 🔑

• Quick to get started with
• Easy to use in the correct way
• Performant, achieve stated goal, flexible enough
• Well tested and documented

‣ This actually helps with design, since it forces you to look at your library from a user
perspective

• Small API

10 / 34

Ease of use 🔑

• Quick to get started with
• Easy to use in the correct way
• Performant, achieve stated goal, flexible enough
• Well tested and documented

‣ This actually helps with design, since it forces you to look at your library from a user
perspective

• Small API
‣ Less to learn, maintain, less opportunity to make breaking changes

10 / 34

Rust library design

Rust library design 🔑

• Write idiomatic code (code that looks nice)

12 / 34

Rust library design 🔑

• Write idiomatic code (code that looks nice)
‣ Typically also happens to be easy to write (in terms of the language not putting

obstacles in your way)

12 / 34

Rust library design 🔑

• Write idiomatic code (code that looks nice)
‣ Typically also happens to be easy to write (in terms of the language not putting

obstacles in your way)
• Rust railroads you into idiomatic code pretty hard

12 / 34

Rust library design 🔑

• Write idiomatic code (code that looks nice)
‣ Typically also happens to be easy to write (in terms of the language not putting

obstacles in your way)
• Rust railroads you into idiomatic code pretty hard

‣ Everyone fought the borrow-checker and various APIs at one time

12 / 34

Going back to the “well tested” point 🔑

• In Rust, we have doc-tests

13 / 34

Going back to the “well tested” point 🔑

14 / 34

Going back to the “well tested” point 🔑

• In Rust, we have doc-tests
‣ Documentation examples become tests:

14 / 34

Going back to the “well tested” point 🔑

14 / 34

Going back to the “well tested” point 🔑

• In Rust, we have doc-tests
‣ Documentation examples become tests:

/// # Examples
/// ```
/// let mut vec = Vec::with_capacity(10);
/// assert_eq!(vec.len(), 0);
/// assert!(vec.capacity() >= 10);
/// for i in 0..10 {
/// vec.push(i);
/// }
/// assert_eq!(vec.len(), 10);
/// assert!(vec.capacity() >= 10);
/// ```

14 / 34

Going back to the “well tested” point 🔑

• Rust highlighting by default, use “#” to hide lines, use no_run (after opening backticks) to
prevent

14 / 34

Going back to the “well tested” point 🔑

• In Rust, we have doc-tests
‣ Documentation examples become tests:

/// # Examples
/// ```
/// let mut vec = Vec::with_capacity(10);
/// assert_eq!(vec.len(), 0);
/// assert!(vec.capacity() >= 10);
/// for i in 0..10 {
/// vec.push(i);
/// }
/// assert_eq!(vec.len(), 10);
/// assert!(vec.capacity() >= 10);
/// ```

14 / 34

Going back to the “well tested” point 🔑

• Rust highlighting by default, use “#” to hide lines, use no_run (after opening backticks) to
prevent snippet from being a doctest

14 / 34

Going back to the “well tested” point 🔑

• In Rust, we have doc-tests
‣ Documentation examples become tests:

/// # Examples
/// ```
/// let mut vec = Vec::with_capacity(10);
/// assert_eq!(vec.len(), 0);
/// assert!(vec.capacity() >= 10);
/// for i in 0..10 {
/// vec.push(i);
/// }
/// assert_eq!(vec.len(), 10);
/// assert!(vec.capacity() >= 10);
/// ```

14 / 34

Going back to the “well tested” point 🔑

• Rust highlighting by default, use “#” to hide lines, use no_run (after opening backticks) to
prevent snippet from being a doctest

• cargo test will run doctests

14 / 34

Going back to the “well tested” point 🔑

• In Rust, we have doc-tests
‣ Documentation examples become tests:

/// # Examples
/// ```
/// let mut vec = Vec::with_capacity(10);
/// assert_eq!(vec.len(), 0);
/// assert!(vec.capacity() >= 10);
/// for i in 0..10 {
/// vec.push(i);
/// }
/// assert_eq!(vec.len(), 10);
/// assert!(vec.capacity() >= 10);
/// ```

14 / 34

Going back to the “well tested” point 🔑

• Rust highlighting by default, use “#” to hide lines, use no_run (after opening backticks) to
prevent snippet from being a doctest

• cargo test will run doctests
• Document public items in any case

14 / 34

Going back to the “well tested” point 🔑

• In Rust, we have doc-tests
‣ Documentation examples become tests:

/// # Examples
/// ```
/// let mut vec = Vec::with_capacity(10);
/// assert_eq!(vec.len(), 0);
/// assert!(vec.capacity() >= 10);
/// for i in 0..10 {
/// vec.push(i);
/// }
/// assert_eq!(vec.len(), 10);
/// assert!(vec.capacity() >= 10);
/// ```

14 / 34

Going back to the “well tested” point 🔑

• Rust highlighting by default, use “#” to hide lines, use no_run (after opening backticks) to
prevent snippet from being a doctest

• cargo test will run doctests
• Document public items in any case

‣ You can use #![deny(missing_docs)] in your crate root

14 / 34

Standard layout 🔑

$ tree
.
|-- Cargo.toml
|-- benches - benchmarks
|-- examples - independent examples (binaries)
|-- src ↓
| |-- bin ↓
| | `-- something.rs - other binaries (if any)
| |-- lib.rs - library entrypoint
| `-- main.rs - if your crate also has an executable (eg. CLI)
`-- tests - "integration" tests

15 / 34

API design 🔑

• Make illegal states unrepresentable (Haskell proverb)

16 / 34

API design 🔑

• Make illegal states unrepresentable (Haskell proverb)
‣ Meaning - only correct usage, within reason, should compile

16 / 34

API design 🔑

• Make illegal states unrepresentable (Haskell proverb)
‣ Meaning - only correct usage, within reason, should compile

• Avoid “stringly-typed” APIs (Pascal Hertleif quote)

16 / 34

🔑

use chrono::{DateTime, Utc, Weekday};

fn is_matching_day(datetime: DateTime<Utc>, day: &str) -> bool {
 let weekday = datetime.weekday();
 match day.to_lowercase().as_str() {
 "monday" => weekday == Weekday::Mon,
 "tuesday" => weekday == Weekday::Tue,
 "wednesday" => weekday == Weekday::Wed,
 "thursday" => weekday == Weekday::Thu,
 "friday" => weekday == Weekday::Fri,
 "saturday" => weekday == Weekday::Sat,
 "sunday" => weekday == Weekday::Sun,
 _ => unreachable!("there is only 7 days in a week, no?"),
 }
}

17 / 34

Oops 🔑

let is_tuesday = is_matching_day(
 some_date,
 "If you ask Rick Astley for a copy of the movie “UP”, he cannot give you it
as he can never give you up. But, by doing that, he is letting you down, and
thus, is creating something known as the Astley Paradox.",
);

• The correct thing to do is use a more concrete type (e.g. an enum for all the days in this
case)

18 / 34

Oops 🔑

let is_tuesday = is_matching_day(
 some_date,
 "If you ask Rick Astley for a copy of the movie “UP”, he cannot give you it
as he can never give you up. But, by doing that, he is letting you down, and
thus, is creating something known as the Astley Paradox.",
);

• The correct thing to do is use a more concrete type (e.g. an enum for all the days in this
case)
‣ Enums are great for representing states in general

18 / 34

Oops 🔑

let is_tuesday = is_matching_day(
 some_date,
 "If you ask Rick Astley for a copy of the movie “UP”, he cannot give you it
as he can never give you up. But, by doing that, he is letting you down, and
thus, is creating something known as the Astley Paradox.",
);

• The correct thing to do is use a more concrete type (e.g. an enum for all the days in this
case)
‣ Enums are great for representing states in general
‣ Unlike random strings, you can document enums

18 / 34

Builder pattern 🔑

• Extremely popular in Rust (because we have no default parameters and variadic functions)

19 / 34

Builder pattern 🔑

20 / 34

Builder pattern 🔑

• Extremely popular in Rust (because we have no default parameters and variadic functions)

fn main() {
 let car = CarBuilder::new("Toyota", "Corolla")
 .year(2020)
 .color(Color::Blue)
 .automatic(true)
 .build();

 println!("{:#?}", car);
}

• Essentially: Constructor (T::new()) -> methods that modify the instance -> build()/
finish()/whatever()

20 / 34

Builder pattern 🔑

20 / 34

Builder pattern 🔑

• Extremely popular in Rust (because we have no default parameters and variadic functions)

fn main() {
 let car = CarBuilder::new("Toyota", "Corolla")
 .year(2020)
 .color(Color::Blue)
 .automatic(true)
 .build();

 println!("{:#?}", car);
}

• Essentially: Constructor (T::new()) -> methods that modify the instance -> build()/
finish()/whatever()

• Generally, the builder methods return either T or &mut T (and rarely &T if doing interior
mutability magic)

20 / 34

Builder pattern 🔑

20 / 34

Builder pattern 🔑

• Extremely popular in Rust (because we have no default parameters and variadic functions)

fn main() {
 let car = CarBuilder::new("Toyota", "Corolla")
 .year(2020)
 .color(Color::Blue)
 .automatic(true)
 .build();

 println!("{:#?}", car);
}

• Essentially: Constructor (T::new()) -> methods that modify the instance -> build()/
finish()/whatever()

• Generally, the builder methods return either T or &mut T (and rarely &T if doing interior
mutability magic)

20 / 34

Builder pattern 🔑

• Let’s you validate and convert parameters implicitly, use defaults, and keep internal
structure hidden

20 / 34

Builder pattern 🔑

• Extremely popular in Rust (because we have no default parameters and variadic functions)

fn main() {
 let car = CarBuilder::new("Toyota", "Corolla")
 .year(2020)
 .color(Color::Blue)
 .automatic(true)
 .build();

 println!("{:#?}", car);
}

• Essentially: Constructor (T::new()) -> methods that modify the instance -> build()/
finish()/whatever()

• Generally, the builder methods return either T or &mut T (and rarely &T if doing interior
mutability magic)

20 / 34

Builder pattern 🔑

• Let’s you validate and convert parameters implicitly, use defaults, and keep internal
structure hidden
‣ Forward compatibility - you can change the struct fields however you want

20 / 34

Builder pattern 🔑

• Extremely popular in Rust (because we have no default parameters and variadic functions)

fn main() {
 let car = CarBuilder::new("Toyota", "Corolla")
 .year(2020)
 .color(Color::Blue)
 .automatic(true)
 .build();

 println!("{:#?}", car);
}

• Essentially: Constructor (T::new()) -> methods that modify the instance -> build()/
finish()/whatever()

• Generally, the builder methods return either T or &mut T (and rarely &T if doing interior
mutability magic)

20 / 34

Builder pattern 🔑

• Let’s you validate and convert parameters implicitly, use defaults, and keep internal
structure hidden
‣ Forward compatibility - you can change the struct fields however you want

• In std: e.g. std::process::Command

20 / 34

Builder pattern 🔑

• Extremely popular in Rust (because we have no default parameters and variadic functions)

fn main() {
 let car = CarBuilder::new("Toyota", "Corolla")
 .year(2020)
 .color(Color::Blue)
 .automatic(true)
 .build();

 println!("{:#?}", car);
}

• Essentially: Constructor (T::new()) -> methods that modify the instance -> build()/
finish()/whatever()

• Generally, the builder methods return either T or &mut T (and rarely &T if doing interior
mutability magic)

20 / 34

Builder pattern 🔑

• Let’s you validate and convert parameters implicitly, use defaults, and keep internal
structure hidden
‣ Forward compatibility - you can change the struct fields however you want

• In std: e.g. std::process::Command
• You can also do session types where your builder goes through several types with

different methods

20 / 34

Builder pattern 🔑

• Extremely popular in Rust (because we have no default parameters and variadic functions)

fn main() {
 let car = CarBuilder::new("Toyota", "Corolla")
 .year(2020)
 .color(Color::Blue)
 .automatic(true)
 .build();

 println!("{:#?}", car);
}

• Essentially: Constructor (T::new()) -> methods that modify the instance -> build()/
finish()/whatever()

• Generally, the builder methods return either T or &mut T (and rarely &T if doing interior
mutability magic)

20 / 34

Builder pattern 🔑

• Let’s you validate and convert parameters implicitly, use defaults, and keep internal
structure hidden
‣ Forward compatibility - you can change the struct fields however you want

• In std: e.g. std::process::Command
• You can also do session types where your builder goes through several types with

different methods

(Meaning you can force an order of operations - useful with protocols, e.g. HTTP requests)

20 / 34

Builder pattern 🔑

• Extremely popular in Rust (because we have no default parameters and variadic functions)

fn main() {
 let car = CarBuilder::new("Toyota", "Corolla")
 .year(2020)
 .color(Color::Blue)
 .automatic(true)
 .build();

 println!("{:#?}", car);
}

• Essentially: Constructor (T::new()) -> methods that modify the instance -> build()/
finish()/whatever()

• Generally, the builder methods return either T or &mut T (and rarely &T if doing interior
mutability magic)

20 / 34

Builder pattern 🔑

• Let’s you validate and convert parameters implicitly, use defaults, and keep internal
structure hidden
‣ Forward compatibility - you can change the struct fields however you want

• In std: e.g. std::process::Command
• You can also do session types where your builder goes through several types with

different methods

(Meaning you can force an order of operations - useful with protocols, e.g. HTTP requests)
(starts to smell like substructural type systems :))

20 / 34

Type conversion ergonomics 🔑

use std::path::Path; // let's pretend Path::exists() doesn't exist :)
use std::fs;

fn file_exists(path: &Path) -> bool {
 fs::metadata(path).is_ok()
}

fn main() {
 // Example usage
 let path = Path::new("./example.txt");
 println!("Does the file exist? {}", file_exists(path));
}

• Not ideal, since we now require user to construct a Path directly. Less flexible

21 / 34

🔑

use std::path::Path; // let's pretend Path::exists() doesn't exist :)
use std::fs;

fn file_exists<P: AsRef<Path>>(path: P) -> bool {
 fs::metadata(path.as_ref()).is_ok()
}

fn main() {
 // Example usage with a &str
 let path_str = "./example.txt";
 println!("Does the file exist? {}", file_exists(path_str));

 // Example usage with a PathBuf
 let path_buf = Path::new("./example.txt").to_path_buf();
 println!("Does the file exist? {}", file_exists(path_buf));
}

22 / 34

🔑

Nice traits to use:

23 / 34

🔑

Nice traits to use:
• AsRef

23 / 34

🔑

Nice traits to use:
• AsRef
• AsMut

23 / 34

🔑

Nice traits to use:
• AsRef
• AsMut
• From

23 / 34

🔑

Nice traits to use:
• AsRef
• AsMut
• From
• Into - Do not implement directly unless needed (blanket impl on From<T>)

23 / 34

🔑

Nice traits to use:
• AsRef
• AsMut
• From
• Into - Do not implement directly unless needed (blanket impl on From<T>)
• TryFrom

23 / 34

🔑

Nice traits to use:
• AsRef
• AsMut
• From
• Into - Do not implement directly unless needed (blanket impl on From<T>)
• TryFrom
• TryInto

23 / 34

🔑

Nice traits to use:
• AsRef
• AsMut
• From
• Into - Do not implement directly unless needed (blanket impl on From<T>)
• TryFrom
• TryInto
• FromStr (gives you a free .parse() on string types)

23 / 34

🔑

Nice traits to use:
• AsRef
• AsMut
• From
• Into - Do not implement directly unless needed (blanket impl on From<T>)
• TryFrom
• TryInto
• FromStr (gives you a free .parse() on string types)

Naturally, you can implement these on your types wherever applicable

23 / 34

Nice traits to implement 🔑

• Debug and optionally Display

24 / 34

Nice traits to implement 🔑

• Debug and optionally Display
• Display & Error (for your Error types)

24 / 34

Nice traits to implement 🔑

• Debug and optionally Display
• Display & Error (for your Error types)
• (Partial)Ord, (Partial)Eq

24 / 34

Nice traits to implement 🔑

• Debug and optionally Display
• Display & Error (for your Error types)
• (Partial)Ord, (Partial)Eq
• Clone, and Copy if it makes sense

24 / 34

Nice traits to implement 🔑

• Debug and optionally Display
• Display & Error (for your Error types)
• (Partial)Ord, (Partial)Eq
• Clone, and Copy if it makes sense
• Hash (if applicable)

24 / 34

Nice traits to implement 🔑

• Debug and optionally Display
• Display & Error (for your Error types)
• (Partial)Ord, (Partial)Eq
• Clone, and Copy if it makes sense
• Hash (if applicable)
• Serde Serialize & Deserialize

24 / 34

Nice traits to implement 🔑

• Debug and optionally Display
• Display & Error (for your Error types)
• (Partial)Ord, (Partial)Eq
• Clone, and Copy if it makes sense
• Hash (if applicable)
• Serde Serialize & Deserialize
• Default

24 / 34

Nice traits to implement 🔑

• Debug and optionally Display
• Display & Error (for your Error types)
• (Partial)Ord, (Partial)Eq
• Clone, and Copy if it makes sense
• Hash (if applicable)
• Serde Serialize & Deserialize
• Default
• Also implement Iterator if your type is a collection or a stream

24 / 34

Nice traits to implement 🔑

• Debug and optionally Display
• Display & Error (for your Error types)
• (Partial)Ord, (Partial)Eq
• Clone, and Copy if it makes sense
• Hash (if applicable)
• Serde Serialize & Deserialize
• Default
• Also implement Iterator if your type is a collection or a stream
• And FromIterator if you want to use .collect()

24 / 34

Nice traits to implement 🔑

• Debug and optionally Display
• Display & Error (for your Error types)
• (Partial)Ord, (Partial)Eq
• Clone, and Copy if it makes sense
• Hash (if applicable)
• Serde Serialize & Deserialize
• Default
• Also implement Iterator if your type is a collection or a stream
• And FromIterator if you want to use .collect()
• TIP: Prefer taking a slice to taking a Vec, and if possible, just take a generic Iterator

24 / 34

Nice traits to implement 🔑

• Debug and optionally Display
• Display & Error (for your Error types)
• (Partial)Ord, (Partial)Eq
• Clone, and Copy if it makes sense
• Hash (if applicable)
• Serde Serialize & Deserialize
• Default
• Also implement Iterator if your type is a collection or a stream
• And FromIterator if you want to use .collect()
• TIP: Prefer taking a slice to taking a Vec, and if possible, just take a generic Iterator

‣ e.g fn hi<T: Iterator<Item=u32>>(numbers: T)

24 / 34

🔑

struct MyCollection<T> { // simple example
 elements: Vec<T>, // consider e.g. address book or any tree ADT
}

// Implementing the FromIterator trait for MyCollection
impl<T> FromIterator<T> for MyCollection<T> {
 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
 let mut c = MyCollection { elements: Vec::new() };

 for i in iter { c.elements.push(i); }

 c
 }
}

let collected: MyCollection<i32> = vec![1, 2, 3, 4, 5].into_iter().collect();
println!("{:?}", collected.elements); // Prints: [1, 2, 3, 4, 5]

25 / 34

Extension traits and orphan rules 🔑

• It is handy to implement foreign traits, sometimes for foreign types

26 / 34

Extension traits and orphan rules 🔑

• It is handy to implement foreign traits, sometimes for foreign types
‣ Forbidden to do ForeignTrait on ForeignType -> Use newtype pattern

26 / 34

Extension traits and orphan rules 🔑

• It is handy to implement foreign traits, sometimes for foreign types
‣ Forbidden to do ForeignTrait on ForeignType -> Use newtype pattern

• You can also write extension traits to provide additional functionality to existing items:

26 / 34

Extension traits and orphan rules 🔑

• It is handy to implement foreign traits, sometimes for foreign types
‣ Forbidden to do ForeignTrait on ForeignType -> Use newtype pattern

• You can also write extension traits to provide additional functionality to existing items:
‣ By convention name is TraitOrTypeNameExt

26 / 34

Extension traits and orphan rules 🔑

• It is handy to implement foreign traits, sometimes for foreign types
‣ Forbidden to do ForeignTrait on ForeignType -> Use newtype pattern

• You can also write extension traits to provide additional functionality to existing items:
‣ By convention name is TraitOrTypeNameExt
‣ In std for example std::ascii::AsciiExt (deprecated)

• https://github.com/Ixrec/rust-orphan-rules

26 / 34

https://github.com/Ixrec/rust-orphan-rules

🔑

use std::fmt;
pub struct DisplayVec<T>(pub Vec<T>);

impl<T: fmt::Display> fmt::Display for DisplayVec<T> {
 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
 let elements_as_strings: Vec<String> = self.0.iter().map(|e|
e.to_string()).collect();
 write!(f, "[{}]", elements_as_strings.join(", "))
 }
}

let numbers = DisplayVec(vec![1, 2, 3, 4, 5]);
println!("{}", numbers); // Prints: "[1, 2, 3, 4, 5]"

27 / 34

Testing 🔑

• Use [dev-dependencies] in Cargo.toml for things you only need for examples

28 / 34

Testing 🔑

• Use [dev-dependencies] in Cargo.toml for things you only need for examples and testing

28 / 34

Testing 🔑

• Use [dev-dependencies] in Cargo.toml for things you only need for examples and testing
• e.g. criterion for writing benchmarks

28 / 34

Testing 🔑

• Use [dev-dependencies] in Cargo.toml for things you only need for examples and testing
• e.g. criterion for writing benchmarks
• In Rust:

28 / 34

Testing 🔑

• Use [dev-dependencies] in Cargo.toml for things you only need for examples and testing
• e.g. criterion for writing benchmarks
• In Rust:

‣ Unified built-in syntax for writing tests

28 / 34

Testing 🔑

• Use [dev-dependencies] in Cargo.toml for things you only need for examples and testing
• e.g. criterion for writing benchmarks
• In Rust:

‣ Unified built-in syntax for writing tests
‣ Types of tests:

28 / 34

Testing 🔑

• Use [dev-dependencies] in Cargo.toml for things you only need for examples and testing
• e.g. criterion for writing benchmarks
• In Rust:

‣ Unified built-in syntax for writing tests
‣ Types of tests:

– Unit - next to your code or src/tests.rs

28 / 34

Testing 🔑

• Use [dev-dependencies] in Cargo.toml for things you only need for examples and testing
• e.g. criterion for writing benchmarks
• In Rust:

‣ Unified built-in syntax for writing tests
‣ Types of tests:

– Unit - next to your code or src/tests.rs
– Integration - in tests/, view your code as a dependency

28 / 34

Testing 🔑

• Use [dev-dependencies] in Cargo.toml for things you only need for examples and testing
• e.g. criterion for writing benchmarks
• In Rust:

‣ Unified built-in syntax for writing tests
‣ Types of tests:

– Unit - next to your code or src/tests.rs
– Integration - in tests/, view your code as a dependency

• -> you cannot touch internal states

28 / 34

Testing 🔑

• Use [dev-dependencies] in Cargo.toml for things you only need for examples and testing
• e.g. criterion for writing benchmarks
• In Rust:

‣ Unified built-in syntax for writing tests
‣ Types of tests:

– Unit - next to your code or src/tests.rs
– Integration - in tests/, view your code as a dependency

• -> you cannot touch internal states
– Benchmarks - similar to integration tests, but for making perf statistics

28 / 34

Testing 🔑

• Use [dev-dependencies] in Cargo.toml for things you only need for examples and testing
• e.g. criterion for writing benchmarks
• In Rust:

‣ Unified built-in syntax for writing tests
‣ Types of tests:

– Unit - next to your code or src/tests.rs
– Integration - in tests/, view your code as a dependency

• -> you cannot touch internal states
– Benchmarks - similar to integration tests, but for making perf statistics

• Some parts of support are nightly-only

28 / 34

Test syntax in Rust 🔑

#[cfg(test)]
mod tests {
 #[test]
 fn test_addition() {
 let sum = 2 + 2;
 assert_eq!(sum, 4);
 }

 #[test]
 #[should_panic(expected = "assertion failed")]
 fn test_failure_scenario() {
 assert!(false, "This test will panic!");
 }
}

Run with cargo test

29 / 34

Result<T> tests 🔑

#[cfg(test)]
mod tests {
 #[test]
 fn test_division() -> Result<(), String> {
 let result = 10 / 2;
 if result == 5 {
 Ok(())
 } else {
 Err(String::from("Division result was not as expected."))
 }
 }
}

30 / 34

Benchmark 🔑

use criterion::{black_box, criterion_group, criterion_main, Criterion};

fn fibonacci(n: u64) -> u64 {
 match n {
 0 => 0,
 1 => 1,
 _ => fibonacci(n - 1) + fibonacci(n - 2),
 }
}

fn criterion_benchmark(c: &mut Criterion) {
 c.bench_function("fibonacci 20", |b| b.iter(|| fibonacci(black_box(20))));
}

criterion_group!(benches, criterion_benchmark); criterion_main!(benches);

Run with cargo bench
31 / 34

Maintenance 🔑

32 / 34

Maintenance 🔑

• Use rustfmt (formatting) and clippy (linter)

33 / 34

Maintenance 🔑

• Use rustfmt (formatting) and clippy (linter)
‣ VS Code and others can do format-on-save, handy

33 / 34

Maintenance 🔑

• Use rustfmt (formatting) and clippy (linter)
‣ VS Code and others can do format-on-save, handy

• You can add them as automatic checks to your CI pipeline

33 / 34

Maintenance 🔑

• Use rustfmt (formatting) and clippy (linter)
‣ VS Code and others can do format-on-save, handy

• You can add them as automatic checks to your CI pipeline
‣ E.g. GitHub Actions, Gitlab CI

33 / 34

Maintenance 🔑

• Use rustfmt (formatting) and clippy (linter)
‣ VS Code and others can do format-on-save, handy

• You can add them as automatic checks to your CI pipeline
‣ E.g. GitHub Actions, Gitlab CI

• #![deny(warnings)] in crate root

33 / 34

Maintenance 🔑

• Use rustfmt (formatting) and clippy (linter)
‣ VS Code and others can do format-on-save, handy

• You can add them as automatic checks to your CI pipeline
‣ E.g. GitHub Actions, Gitlab CI

• #![deny(warnings)] in crate root
‣ In Rust, it is a standard practice not to publish code with warnings

33 / 34

Maintenance 🔑

• Use rustfmt (formatting) and clippy (linter)
‣ VS Code and others can do format-on-save, handy

• You can add them as automatic checks to your CI pipeline
‣ E.g. GitHub Actions, Gitlab CI

• #![deny(warnings)] in crate root
‣ In Rust, it is a standard practice not to publish code with warnings
‣ You can enable additional lints and additional clippy lints

33 / 34

Maintenance 🔑

• Use rustfmt (formatting) and clippy (linter)
‣ VS Code and others can do format-on-save, handy

• You can add them as automatic checks to your CI pipeline
‣ E.g. GitHub Actions, Gitlab CI

• #![deny(warnings)] in crate root
‣ In Rust, it is a standard practice not to publish code with warnings
‣ You can enable additional lints and additional clippy lints

• Other nice checks:

33 / 34

Maintenance 🔑

• Use rustfmt (formatting) and clippy (linter)
‣ VS Code and others can do format-on-save, handy

• You can add them as automatic checks to your CI pipeline
‣ E.g. GitHub Actions, Gitlab CI

• #![deny(warnings)] in crate root
‣ In Rust, it is a standard practice not to publish code with warnings
‣ You can enable additional lints and additional clippy lints

• Other nice checks:
‣ cargo-machete - detect unused deps

33 / 34

Maintenance 🔑

• Use rustfmt (formatting) and clippy (linter)
‣ VS Code and others can do format-on-save, handy

• You can add them as automatic checks to your CI pipeline
‣ E.g. GitHub Actions, Gitlab CI

• #![deny(warnings)] in crate root
‣ In Rust, it is a standard practice not to publish code with warnings
‣ You can enable additional lints and additional clippy lints

• Other nice checks:
‣ cargo-machete - detect unused deps
‣ cargo-outdated - outdated deps

33 / 34

Maintenance 🔑

• Use rustfmt (formatting) and clippy (linter)
‣ VS Code and others can do format-on-save, handy

• You can add them as automatic checks to your CI pipeline
‣ E.g. GitHub Actions, Gitlab CI

• #![deny(warnings)] in crate root
‣ In Rust, it is a standard practice not to publish code with warnings
‣ You can enable additional lints and additional clippy lints

• Other nice checks:
‣ cargo-machete - detect unused deps
‣ cargo-outdated - outdated deps
‣ cargo-tarpaulin/cargo-llvm-cov - code coverage

33 / 34

Conclusion 🔑

• Make your API minimal and consistent

34 / 34

Conclusion 🔑

• Make your API minimal and consistent
• Don’t hardcode types where you don’t need to

34 / 34

Conclusion 🔑

• Make your API minimal and consistent
• Don’t hardcode types where you don’t need to

‣ Use generics with trait bounds

34 / 34

Conclusion 🔑

• Make your API minimal and consistent
• Don’t hardcode types where you don’t need to

‣ Use generics with trait bounds
• Integrate with Rust std traits

34 / 34

Conclusion 🔑

• Make your API minimal and consistent
• Don’t hardcode types where you don’t need to

‣ Use generics with trait bounds
• Integrate with Rust std traits
• Write tests and documentation

34 / 34

Conclusion 🔑

• Make your API minimal and consistent
• Don’t hardcode types where you don’t need to

‣ Use generics with trait bounds
• Integrate with Rust std traits
• Write tests and documentation
• Use tools to perform automatic checks

34 / 34

	Zen and the Art of Library Maintenance
	Writing libraries and testing
	General principles
	General principles
	Consistency
	API stability
	Encapsulation
	Ease of use

	Rust library design
	Rust library design
	Going back to the "well tested" point
	Standard layout
	API design
	
	Oops
	Builder pattern
	Type conversion ergonomics
	
	
	Nice traits to implement
	
	Extension traits and orphan rules
	
	Testing
	Test syntax in Rust
	Result<T> tests
	Benchmark
	Maintenance
	Maintenance
	Conclusion

