
The Rust Borrow Checker 🔑

Lukáš Hozda

2025-04-10
Braiins Systems s.r.o

Ownership and Lifetimes

Ownership: Rust’s Secret Weapon 🔑

• Core feature of Rust’s memory safety guarantees
• Allows memory efficiency without garbage collection
• Every value has exactly one owner
• Values are dropped when owner goes out of scope
• Ownership can be transferred (moved)

2 / 44

References: Borrowing Owned Values 🔑

• Shared reference: &T - multiple allowed, read-only
• Mutable reference: &mut T - only one allowed, can modify
• References are non-owning pointers with restrictions

3 / 44

Reference Rules 🔑

Two fundamental rules:
1. A reference cannot outlive its referent
2. A mutable reference cannot be aliased

These simple rules prevent memory safety issues like:
• Use-after-free
• Double-free
• Data races

4 / 44

Why These Rules Matter 🔑

fn as_str(data: &u32) -> &str {
 // compute the string
 let s = format!("{}", data);

 // This won't compile! We're returning a reference
 // to a value that will be dropped at function end
 &s
}

5 / 44

And Also This… 🔑

let mut data = vec![1, 2, 3];
// get a reference to first element
let x = &data[0];

// This won't compile! We can't modify while x is borrowed
data.push(4); // push might reallocate the vector's memory

println!("{}", x); // would be a dangling pointer

6 / 44

The Borrow Checker

What Is the Borrow Checker? 🔑

• Core component of the Rust compiler
• Analyzes how references are created and used
• Enforces the reference rules at compile time
• Tracks scopes, lifetimes, and borrows through control flow
• Prevents memory safety violations without runtime cost

8 / 44

Borrow Checker Analysis 🔑

• Tracks each variable’s “state”: owned, borrowed, mutably borrowed
• Follows all code paths and ensures rules are never violated
• Analyzes when references are created and last used
• Can understand non-overlapping borrows of different struct fields
• Much more advanced than simple scope-based checking

9 / 44

How Borrowck Works (Simplified) 🔑

1. Constructs a control-flow graph of the program
2. Tracks the state of each variable at every point
3. Ensures borrowing rules are never violated
4. Reports errors when unsafe conditions would occur
5. Optimizes away unnecessary restrictions when safe

10 / 44

Lifetimes

What Are Lifetimes? 🔑

• Regions of code where a reference is valid
• Usually implicit within function bodies
• Must be expressed at function boundaries
• Annotated with 'a, 'b, 'static, etc.
• Not garbage collection - purely compile-time

12 / 44

Lifetime Annotations 🔑

// Lifetimes in function signatures
fn longest<'a>(x: &'a str, y: &'a str) -> &'a str {
 if x.len() > y.len() { x } else { y }
}

// Lifetimes in structs
struct Excerpt<'a> {
 part: &'a str,
}

13 / 44

Lifetime Desugaring 🔑

Function signatures use lifetimes to show relationships:

// What we write
fn first_word(s: &str) -> &str { /* ... */ }

// What Rust sees (after elision)
fn first_word<'a>(s: &'a str) -> &'a str { /* ... */ }

14 / 44

Example: References that Outlive Referents 🔑

,compile_fail
fn as_str(data: &u32) -> &str {
 let s = format!("{}", data);
 &s // Error: returns reference to data owned by local variable
}

Desugared:

,ignore
fn as_str<'a>(data: &'a u32) -> &'a str {
 let s = format!("{}", data);
 &s // Error: 's' lives for a smaller scope than 'a
}

15 / 44

Example: Aliasing a Mutable Reference 🔑

,compile_fail
let mut data = vec![1, 2, 3];
let x = &data[0];
data.push(4); // Error: cannot borrow `data` as mutable
println!("{}", x);

The borrow checker prevents this because push might reallocate the vector’s memory,
invalidating the reference x.

16 / 44

Lifetime Elision 🔑

Rust has rules to infer lifetimes in common patterns:

1. Each input reference gets its own lifetime parameter
2. If there is exactly one input lifetime, it’s assigned to all outputs
3. If there’s a &self/&mut self input, its lifetime is assigned to outputs
4. Otherwise, output lifetimes must be specified

17 / 44

Lifetime Elision Examples 🔑

// Elided:
fn print(s: &str);
// Expanded:
fn print<'a>(s: &'a str);

// Elided:
fn substr(s: &str, until: usize) -> &str;
// Expanded:
fn substr<'a>(s: &'a str, until: usize) -> &'a str;

// Error - can't determine output lifetime:
fn get_str() -> &str;

18 / 44

Unbounded Lifetimes 🔑

In unsafe code, references can be created “out of thin air”:

,no_run
fn get_str<'a>(ptr: *const String) -> &'a str {
 unsafe { &*ptr } // Creates a reference with unbounded lifetime
}

• Dangerous! Creates references with arbitrary lifetimes
• Should be bounded as quickly as possible
• Common in transmute, raw pointers, FFI

19 / 44

Subtyping and Variance

What is Subtyping? 🔑

• Concept that one type can be used in place of another
• If Sub <: Super, then Sub satisfies all requirements of Super
• Allows more flexible type relationships

21 / 44

Lifetime Subtyping 🔑

For lifetimes: 'long <: 'short if 'long completely contains 'short

let hello: &'static str = "hello";
{
 let world = String::from("world");
 let world = &world; // shorter lifetime than 'static

 // This works! 'static can be used where 'world is expected
 debug(hello, world);
}

22 / 44

Variance: How Subtyping Propagates 🔑

Given Sub <: Super:

• Covariant: F<Sub> <: F<Super> (subtyping preserved)
• Contravariant: F<Super> <: F<Sub> (subtyping inverted)
• Invariant: No relationship exists between F<Sub> and F<Super>

23 / 44

Variance of Common Types 🔑

	'a	T	U
`&'a T `	covariant	covariant	
`&'a mut T`	covariant	invariant	
`Box<T>`		covariant	
`Vec<T>`		covariant	
`Cell<T>`		invariant	
`fn(T) -> U`		**contra**variant	covariant
`*const T`		covariant	
`*mut T`		invariant	

24 / 44

Why is this Important? 🔑

fn assign<T>(input: &mut T, val: T) {
 *input = val;
}

fn main() {
 let mut hello: &'static str = "hello";
 {
 let world = String::from("world");
 assign(&mut hello, &world); // Error!
 }
 println!("{hello}"); // Would use freed memory
}

25 / 44

Understanding the Error 🔑

• We’re assigning &world to hello (via input)
• &world has a shorter lifetime than &'static str
• If allowed, it would create a dangling reference
• &mut T is invariant over T to prevent this exact problem

26 / 44

Why &mut T Must Be Invariant 🔑

The invariance of &mut T is crucial for memory safety:

let mut v: Vec<&'static str> = Vec::new();
{
 let s = String::from("hello");
 let rs = &s;
 // If &mut Vec<&'static str> was a subtype of &mut Vec<&'short str>
 // this would allow us to put a short-lived reference into a collection
 // that promises all its contents live for 'static
 v.push(rs); // Error!
}
println!("{:?}", v); // Would use freed memory!

27 / 44

Function Pointers and Contravariance 🔑

Function arguments are contravariant:

fn store(input: &'static str) {
 // Stores in a collection requiring 'static values
}

fn demo<'a>(input: &'a str, f: fn(&'a str)) {
 f(input);
}

fn main() {
 let local = String::from("local");
 // Error! Can't pass store (requires 'static) where
 // a function accepting any lifetime is expected
 demo(&local, store);
}

28 / 44

Advanced Lifetime Patterns

Higher-Rank Trait Bounds (HRTBs) 🔑

Used when a function or closure needs to work with any lifetime:

// Accept any function that works with any lifetime
fn call_with_ref<F>(f: F)
where
 F: for<'a> Fn(&'a i32) -> &'a i32,
{
 let x = 10;
 let result = f(&x);
 println!("{}", result);
}

30 / 44

'static Lifetimes 🔑

Two meanings:
1. Lives for the entire program duration
2. Has no lifetime dependencies (for trait bounds)

// Lives for the program duration
let s: &'static str = "hello";

// No lifetime dependencies
fn process<T: 'static>(t: T) { /* ... */ }

31 / 44

Splitting Borrows 🔑

Borrowck understands field-level borrowing:

struct Point { x: i32, y: i32 }

let mut p = Point { x: 0, y: 0 };
let x = &mut p.x;
let y = &mut p.y; // OK! Different fields

*x += 10;
*y += 20;

32 / 44

Splitting Complex Structures 🔑

But borrowck doesn’t understand all containers:

let mut arr = [1, 2, 3];
let a = &mut arr[0];
let b = &mut arr[1]; // Error! Can't borrow arr mutably twice

33 / 44

Working with Disjoint Slices 🔑

let mut arr = [1, 2, 3, 4, 5];

// split_at_mut creates two distinct mutable slices
let (left, right) = arr.split_at_mut(2);

// Now we can modify both parts independently
left[0] += 10;
right[0] += 20;

34 / 44

How Mutable Iterators Work 🔑

Iterator API produces multiple values from a single &mut self:

trait Iterator {
 type Item;
 fn next(&mut self) -> Option<Self::Item>;
}

For &mut iterators, this seems to create multiple &muts to the same data, but:
• Iterators are one-shot (each element returned at most once)
• Carefully implemented to never alias mutable references

35 / 44

Stacked Borrows Model

What is Stacked Borrows? 🔑

• Formal memory model defining Rust’s aliasing rules
• Used by compiler developers and unsafe code authors
• Defines when two pointers can access the same memory
• Models memory access permissions using a stack structure
• MIRI (MIR Interpreter) implements and checks this model

37 / 44

The Permission Stack 🔑

For each memory location:
• Permissions are tracked in a stack
• Each new reference operation pushes to the stack
• Creating a &mut invalidates all other access
• When references go out of scope, they’re popped
• Accessing memory requires appropriate permission

38 / 44

Stacked Borrows Example 🔑

let mut x = 10;
let r1 = &mut x; // Stack: [r1]
*r1 = 20; // OK, r1 has permission
let r2 = &*r1; // Stack: [r1, r2]
println!("{}", *r2); // OK, r2 has permission
*r1 = 30; // Stack: [r1], r2 invalidated
// Using r2 here would be UB under stacked borrows

39 / 44

Two-Phase Borrows 🔑

Special case for patterns like:

let mut v = vec![1, 2, 3];
v.push(v.len()); // Calls v.len() then mutates v

• First phase: “Reserved” mutable borrow
• Second phase: Activated after shared borrows are done
• Allows interleaved shared and mutable borrows in specific cases

40 / 44

Best Practices

Avoiding Common Borrow Checker Fights 🔑

• Use cloning for complex ownership scenarios
• Structure code to make lifetime relationships clear
• Let ownership flow naturally through function calls
• Break problems into smaller, well-defined components
• Prefer consuming ownership to borrowing when reasonable

42 / 44

Fighting with the Borrow Checker? 🔑

Ask yourself:
• Is this actually a memory safety issue?
• Can I restructure my code to avoid the problem?
• Would using Clone simplify things?
• Is interior mutability (RefCell, Mutex) appropriate?
• Do I actually need references here?

43 / 44

Questions?

	Ownership and Lifetimes
	Ownership: Rust's Secret Weapon
	References: Borrowing Owned Values
	Reference Rules
	Why These Rules Matter
	And Also This…

	The Borrow Checker
	What Is the Borrow Checker?
	Borrow Checker Analysis
	How Borrowck Works (Simplified)

	Lifetimes
	What Are Lifetimes?
	Lifetime Annotations
	Lifetime Desugaring
	Example: References that Outlive Referents
	Example: Aliasing a Mutable Reference
	Lifetime Elision
	Lifetime Elision Examples
	Unbounded Lifetimes

	Subtyping and Variance
	What is Subtyping?
	Lifetime Subtyping
	Variance: How Subtyping Propagates
	Variance of Common Types
	Why is this Important?
	Understanding the Error
	Why &mut T Must Be Invariant
	Function Pointers and Contravariance

	Advanced Lifetime Patterns
	Higher-Rank Trait Bounds (HRTBs)
	'static Lifetimes
	Splitting Borrows
	Splitting Complex Structures
	Working with Disjoint Slices
	How Mutable Iterators Work

	Stacked Borrows Model
	What is Stacked Borrows?
	The Permission Stack
	Stacked Borrows Example
	Two-Phase Borrows

	Best Practices
	Avoiding Common Borrow Checker Fights
	Fighting with the Borrow Checker?

	Questions?

